
Lost Pointers
Now and then my programs generate GPFs or other
exceptions (well, no-one’s perfect!). Perhaps an object
has not been created, or a pointer has been destroyed
somewhere. Typically, Delphi then starts its built-in
debugger and shows the line which generates the
exception. Unfortunately, the debugger does not let me
look at the variables to see who is the culprit, since the
current context on the stack is lost. A simple solution
is to patch a TRY..EXCEPT..END around the line where
the failure occurs. I place a breakpoint in the exception
and when the debugger reaches this breakpoint I can
examine my variables to find out why the GPF
occurred. Listing 1 shows a simple example.

Contributed by Goeran Forsstroem from Vaesteras,
Sweden (email: goran.forsstrom@seisy.mail.abb.com)

I/O Error Handling Update
If you’ve been following my series on File Handling you
will want to make a special note of this. Delphi 2 adds
certain porting problems for I/O error handling.
Although Win32 uses the same error codes as DOS,
some errors are reported more precisely and so differ-
ent errors get generated. As an example, a call to
ChDir(’A:\’) where there is no floppy disk in drive A:
will give an I/O error of 3 (path not found) in Delphi 1,
but error 21 (ERROR_NOT_READY, device not ready) in
Delphi 2. For a complete list of Win32 error codes load
up the Delphi 2 help index and look for “error codes”
and then choose “Error Codes (Win32 Programmer’s
Reference)” but be prepared for some missing text
(many occurrences of “ERROR” are listed as “ROR”).

Contributed by Brian Long (email: CompuServe
76004,3437)

Hints For Modeless Forms In DLLs
If you have a form in a DLL, then hints for the controls
on the form will only show if you do a ShowModal, not a
regular Show of the form. Most people believe that this
might be due to the fact that a DLL has no application
object (which is not true), or that a DLL cannot have a
timer (also not true). The fact is, the application object
of a DLL is not ‘activated’ like the application object of
a normal application, ie it doesn’t have a message loop.
A message loop is important, because that will call the
OnIdle event, which will in the end check if there is a

Tips
& Tricks

hint to be shown. So, if we want our modeless dialogs
and forms in DLLs to show hints as well, it seems we
have to call the Idle method. Unfortunately, this
method is private. However, a bit of digging in the VCL
shows that if you put a timer somewhere on the form
and make it call HandleMessage every time it ticks (every
1/100th second for example), then you get the hints.
HandleMessage will call the private method Idle, which
in turn will make sure the hints are shown.

Contributed by Bob Swart (email: CompuServe
100434,2072)

Is Delphi Running?
If you want to write a program or component which will
only work when Delphi is running, you will need to find
out if Delphi is active. My way is to add uses ExptIntf;
to the implementation section of your main unit and try
to call some APIs from ToolServices. Another way is to
see if you can find the Delphi Windows themselves: this
is easier, but less error-proof; just include the
DelphRun unit in Listing 2 in your uses clause.

Contributed by Bob Swart (email: CompuServe
100434,2072)

function Average(i_Int1 : integer; i_Int2 : integer) :
 integer;
begin
 Result := (i_Int1+i_Int2) div 2;
end;

procedure TForm1.Button1Click(Sender: TObject);
{ Without exception }
var
 int1 : integer;
 int2 : integer;
 ptr1 : ^integer;
 ptr2 : ^integer;
begin
 int1 := 10;
 int2 := 20;
 ptr1 := @int1;
 ptr2 := @int2;
 ptr2 := nil; { Pointer is destroyed }
 int1 := Average(ptr1^, ptr2^); { It GPFs! }
 ShowMessage (’Average= ’ + IntToStr(int1));
end;

procedure TForm1.Button2Click(Sender: TObject);
{ With exception }
var
 int1 : integer;
 int2 : integer;
 ptr1 : ^integer;
 ptr2 : ^integer;
begin
 int1 := 10;
 int2 := 20;
 ptr1 := @int1;
 ptr2 := @int2;
 ptr2 := nil; { Pointer is destroyed }
 try
 int1 := Average(ptr1^, ptr2^); { It GPFs! }
 ShowMessage (’Average= ’ + IntToStr(int1));
 except
 ShowMessage(’Exception!’); { Put breakpoint here! }
 end;
end;

➤ Listing 1

60 The Delphi Magazine Issue 8

A Delphi Scratchpad
If you want a Delphi scratchpad, you can make a unit
called begin and then any time you want to get there,
just put the cursor on the word begin in your source
code, press Ctrl-Enter and voila – just the quickest way
to get to a temporary notes file!

Contributed by Michael Ax of Ax-Systems

TDirectoryOutline Bug
Using the TDirectoryOutline component in conjunction
with a TFileListBox, I noticed that when the root direc-
tory is selected in the DirectoryOutline the FileList is
not updated correctly, but displays the previously
selected directory’s file list. After a little investigation
I found the reason for this. The last line in the Click
method of TDirectoryOutline is:

Directory := Items[SelectedItem].FullPath;

However, for the root directory, FullPath returns c:
and not c:\ and so the last directory is not changed
(just as when you type c: from the DOS prompt). This
can be easily fixed by replacing the Click method with
the code in Listing 3.

Contributed by Roberto De Marini from Italy (email:
rdemari@mbox.vol.it)

Indexing Of TParam Objects
In A TQuery.Params Property
Every instance of a parameter in a parameterized SQL
statement produces a separate entry in the Params
array. Being unaware of this and using

Query.Params[n] AsXxxxx := ParamValue;

(where AsXxxxx is the required TParam method for the
TParam.value field type) to assign values to parameters
can result in several hours of hacking of the “why
doesn’t this query produce the right records!” variety.

For example, the SQL statement

select * from FOCI where
 (FOCI.’Sex’ = :ClientSex or FOCI.’Sex’ = 2)
 and FOCI.’Min Age’ <= :ClientAge
 and (FOCI.’Max Age’ >=
 :ClientAge or FOCI.’Max Age’ = 0)
 and (FOCI ’Ethnic Grp’ =
 :ClientEthnic or FOCI.’Ethnic Grp’ = 0)

produces the Params values of

Params[0].Name = ’ClientSex’
Params[1].Name = ’ClientAge’
Params[2].Name = ’ClientAge’
{not ClientEthnic as muggins here at first thought!}

Params[3].Name = ’ClientEthnic’

Fortunately,

Query. ParamByName(’ClientAge’).AsXxxxx :=
 ParamValue;

sets all instances of ClientAge to the correct value. To
check Params indexes and names at run time use the
code in Listing 4.

Contributed by Design Consultant Martin Humby of
Portchester, Hampshire.

Send In Those Tips Please!
If you have some useful tips accumulated from
your long hours of development (all highly
enjoyable of course!) why not share them with
your fellow Delphi developers? Just drop an
email to the Editor, Chris Frizelle, on
70630.717@compuserve.com or send us a disk,
letter or fax. Who knows, you could even
become famous!

unit DelphRun;
interface
implementation
uses WinTypes, WinProcs;
initialization
 if (FindWindow(’TApplication’, ’Delphi’) = 0) OR
 (FindWindow(’TPropertyInspector’, nil) = 0) OR
 (FindWindow(’TAppBuilder’, nil) = 0) then begin
 MessageBox(GetFocus,
 ’Delphi 1.0x is not running!’,
 ’Dr.Bob says...’, MB_ICONHAND OR MB_OK);
 Halt
 end
end.

➤ Listing 2

procedure TDirectoryOutline.Click;
var
 TempDir: string;
begin
 inherited Click;
 TempDir := Items[SelectedItem].FullPath;
 if Length(TempDir) < 3 then
 TempDir := TempDir +’\’; {Adds required backslash}
 Directory := TempDir;
end;

➤ Listing 3

procedure TForm1.ButtonShowParamsClick(
 Sender: TObject);
var
 i: integer;
begin
 Listbox.ltems.Clear;
 for i:= 0 to (Query.ParamCount-1) do
 Listbox.ltems.Add(’[’+ IntToStr(i)+’] ’+
 Query.Params[i].Name;
end;

➤ Listing 4

62 The Delphi Magazine Issue 8

	Lost Pointers
	I/O Error Handling Update
	Hints For Modeless Forms in DLLs
	In Delphi Running?
	A Delphi Scratchpad
	TDirectoryOutline Bug
	Indexing of TParam Objects In A TQuery.Params Property

